Group Theory 4th - Class

I the group Zm
We defined an equivalence relation on the
set of integers, Z, as follows;
Fix a partive integer n the model
o For a,beZ, define
$$a \equiv b \pmod{n}$$

o For a,beZ, define $a \equiv b \pmod{n}$
if $b - a$ is divisible by n, i.e.
 $b - a = 9$ n two some geZ
• We checked that this indeed is an equiv. el.
(1) $a \equiv a$
(2) $a \equiv b \Leftrightarrow b \equiv a$
(3) $a \equiv b \& b \equiv c \implies a \equiv c$
• $Z_n := \sum congruence classe of integers?
 $= \sum caj_n : a \in Z_s^s$
where $(a)_n = \sum b \in b \in \mathbb{Z}$ $[n(a - b)^s$
This set has a natural group structure,
written additively. $(x = t)$, with identity $e=coj_n$:
 $[a]_n + Cb]_n := (a + b]_n$
 $ched: (a)_n + \sum (a)_n = (a)_n + (a)_n = (a)_n$$

• recall
$$[a_{1}^{n} = \frac{1}{2}$$
, a_{1}^{n} , a_{2}^{n} , a_{2}^{n} , a_{1}^{n} , a_{1}^{n} , a_{2}^{n} , a_{1}^{n}

. This is the for any (finite) group G: dr
multiplication is a latin square of size [6].
e a b c ... x
a are ab are and
b bea be bee
c c.a ces are
Suppose art = arx. Then, by the Cancellation law
to groups: b=x.
Pan Magning (S, K) that have the cancellation
projecty (arb=arc
$$\Rightarrow$$
 b=c) are called
queat-groups. Their Cayley talles are
latin squares. Conversely, any Latin
square defines a questi-goorp.
Back to Zn
Zin also has a multiplication operation:
.: Zn *Zn \rightarrow Zn
([a], [i]) $\mapsto calledie (a+qui)(b+pn)$
b=b' b'-b = pn $=$ a'b'=(a+qui)(b+pn)
b=b' b'-b = pn $=$ a'b'=(a+qui)(b+pn)
.: (a'b'=ab (modin)
:: [ab], = [a'b], and the operation on Zn
is associative, and has identify [i],
(i), [a], = [a], [i], = [a], (i), a (i) (a (1)) (m Z)
(i) (a), = [a], : [i], = [a], (i) (a (1)) (m Z)
.: (a'b'=ab (modin)
:: [ab], = [a'b'; multiplication gradien on Zn
is associative, and has identify [i],
(i) (a), = [a], : [i], = [a], (i) (a (1)) (m Z)

$$\begin{array}{c} (\mathbb{Z},n,!) \xrightarrow{i} a \quad \text{formod}. & \text{But it is vat a grow,} \\ \text{since [0] observat have an inverse.} \\ \text{Hte:} & \text{Multiplication is distributive with addition:} \\ (\mathbb{Z}, (\mathbb{Z}, +\mathbb{D}_n) = \mathbb{Z}, \mathbb{D}, +\mathbb{Z}, \mathbb{C}, \mathbb{L}) \\ \mathbb{Z}, (\mathbb{Z}, +\mathbb{D}, \cdot) \xrightarrow{i} a \quad \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, n, +) \xrightarrow{i} \text{is a } \underline{\text{ning}} \quad \left[\text{in fact a commutative}\right] \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \xrightarrow{i} \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}) \\ \mathbb{H} = \mathbb{Z}, (\mathbb{Z}) = \mathbb{Z}, (\mathbb{Z}$$

$$= \left\{ \overline{a} \right\}_{k} \in \mathbb{Z}_{n} : gcd(a,n) = 1 \right\}$$

$$(learly, (Z_{n}^{\times}), \overline{a}) is a group of Questions : What is the size of this group?
is, what is [Z_{n}^{\times}]?$$
Examples $||Z_{n}|| |Z_{n}||$

$$= \frac{Z_{n}}{2} ||Q_{n}(1)||Z_{n}|| |Z_{n}||Z_{n$$

or
$$P(p) = p \cdot (1 - \frac{1}{p}) = p \cdot \frac{p}{p} - p - 1$$