Group Theory
att - Class
I The group \mathbb{Z}_{n}
We defined an equivalence relation on the set of integers, \mathbb{Z}, as follows;

- Fix a positive integer n a congment tob moline
- For $a, b \in \mathbb{Z}$, olefine $a \equiv b(\bmod n)$ if $b-a$ is divisible by n ore. $b-a=q \cdot n \quad$ for some $q \in \mathbb{Z}$
- We checked that this indeed is an equiv. El: H:
(1) $a \equiv a$
(2) $a \equiv b \Longleftrightarrow b \equiv a$
(3) $a \equiv b \& b \equiv c \Rightarrow a=c$
- $\mathbb{Z}_{n}:=\left\{\begin{array}{c}\text { congruence case of integers }\} \\ \text { modulo } n\end{array}\right.$

$$
=\left\{[a]_{n}: a \in \mathbb{Z}\right\}
$$

whee $[a]_{n}=\{b \in \mathbb{Z}|x| a-b\}$
This set has a natural group structure, written adiditively $(*=+)$, with identity $\in=[0]_{n}$:

$$
[a]_{n}+[b]_{n}:=[a+b]_{n}
$$

check: $\quad([a]+[b))+[(c)=[a]+(b]+[\bar{c}])$

$$
[a]+[0]=[0]+[a]=[a]
$$

$$
[a]+[n-a]=[n-a]+[a]=[0]
$$

note $\mathbb{Z}_{n}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$

- recall $[a]_{n}=\{\cdots, a-2 n, a-n, a, a+n, a+2 n, \ldots\}$
so we may write $[a]_{n}=[b]_{n}$ ulere
eg: $[17], 0 \leq b \leq n-1$

$$
\begin{aligned}
& 17=5 \cdot 3+2 \\
& \left.\hat{\uparrow}=\begin{array}{l}
1 \\
a \\
a \\
n
\end{array}\right)
\end{aligned}
$$

1 $n=5 ; a=2$ has (andollitie) inverse

Note \mathbb{Z}_{n} is a commutation gores:

$$
[a]+[b]-[b]+[a]
$$

Multiplication tale for \mathbb{E} n (ar, Caylay table)

$$
\begin{aligned}
\mathbb{Z}_{2} & =\left\{\left[0_{2},(\sqrt[10]{ }\}\right.\right. \\
& =\{0,1\}
\end{aligned}
$$

0123
1230
2301
$\begin{array}{llll}3 & 0 & 1 & 2\end{array}$

- Important doservatim: Both rows and columns are permutations of $\{0,1, \ldots, n-1\}$ (not them) Moreover, there are no repetions on either rows or columns.
- Hence, the multiplication tables above are Latin squares!

This is the for any (finite) group G : its multiplication is a latin square of size $|G|$.
$e \quad a \quad b \quad c \cdots x$
a a*a $a+c$
$b \quad b * a b * b * c$
c $c * a c * b c$
Suppose ' $a * b=a * x$. Then, by the Cancellation Law for groups: $b=x$.
Rem Magmas $(S, *)$ that have the cancellation property $(a * b=a+c \Rightarrow b=c)$ are called quasi-groups. Their Coyly tables are Latin squares. Conversely, any Latin square defines a quasi-groung.
Back to \mathbb{Z}
\mathbb{Z}_{n} also has a multiplication operation:

$$
\begin{aligned}
\therefore \mathbb{Z}_{n} \times \mathbb{\mathbb { Z }}_{n} & \longrightarrow \mathbb{C}_{n} \\
\left([a]_{n},[b]_{n}\right) & \longrightarrow[a]_{n}[b]_{n}:=[a b]_{n}
\end{aligned}
$$

check:

$$
\text { k: } \begin{aligned}
a \equiv a^{\prime} \\
b \equiv b^{\prime}
\end{aligned} \Rightarrow a^{\prime}-a=q n \Rightarrow b^{\prime}-b=p n \Rightarrow \begin{aligned}
a^{\prime} b^{\prime} & =a+q n)(b+p n) \\
& =a b+b q n+a p n+p n^{2} \\
& =a b+n(b q+a p+p q n)
\end{aligned} \quad \begin{aligned}
\therefore a^{\prime} b^{\prime} \equiv a b(\bmod n) & \text { and the i operation on } \mathbb{Z}_{n}
\end{aligned}
$$

Easily checked: this multiplication operation on \mathbb{Z}_{n} is associative, and has identity []$_{n}$.

$$
[1)_{n} \cdot[a]_{n}=[a]_{n} \cdot[1]_{n}=[a]_{n} \quad\left(r i n c e a_{i n} 1=(a=a)\right.
$$

$=(\mathbb{Z}, n, 0)$ is a nanoid. But it is not a gory y, since $[0]$ oles not have an inverse.
Mite: Multiplication is distributive w.r.t. addition:

$$
[a]_{n} \cdot\left(b b_{n}+\left[c_{n}\right)=[a]_{n} \cdot[b]+\left[a_{n}\right]_{n}[c]_{n}\right.
$$

- Also, is combative.

Hence, $\left(\mathbb{Z}_{n},+, \cdot\right)$ is a ring (in fact, a commitaile)
Se f $\mathbb{Z}_{n}^{x}=\left\{(a) \in \mathbb{Z}_{n} \mid\right.$ [a] has a (multiplicative) indexes $\}$ ie, $\exists[b]_{n}$ st. $[a]_{n} \cdot[b]_{n}=1$, i.e. $\quad a b=1+q n$, for some $q \in \mathbb{Z}$

Prop $[a]_{a}$ in \mathbb{Z}_{n} is invertible $\Longleftrightarrow \operatorname{gcd}(a, n)=1$
eg: $*[3]$ is invertible in \mathbb{Z}_{10}, since $\operatorname{gcd}(3,10)=1$ or : $(3) \cdot[7]=[2 \pi=[i]$

* (4) A not invertible in $\mathbb{Z}_{10}:(3) \cdot[7]=[2 \pi=(1), ~ s i n c e ~ g c d ~(4,10)=2 \neq 1$

Proof (\Leftrightarrow) $\operatorname{suppsse}(\bar{a})_{n},[b]_{n}=[]_{n}$. Then:

$$
\begin{array}{ll}
a b=1+n q & \text { for some } q \in \mathbb{Z} \\
a b+(-q) n=1 & \overrightarrow{b_{y}} \text { Thin from lactone }(b, n)=1
\end{array}
$$

(El) $\operatorname{gcd}(a, n)=1 \Rightarrow{ }^{\circ} 1=a_{i k}+q n$ for some $k, q \in \mathbb{Z}$

$$
\Rightarrow a k=1-9 n
$$

$$
\Rightarrow(a)_{n}\left[(k)_{n}=(7]_{n} \quad \text { (and so } \quad\left(k_{n}=(a)_{n}^{-1}\right)\right.
$$

Write $\mathbb{Z}_{n}^{x}=\left\{[a]_{n} \in \mathbb{Z}_{n}:[a]_{n}\right.$ is invertible $\}$
has a multiplicative
inverse inverse

$$
=\left\{[a]_{n} \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}
$$

Clearly, $\left(\mathbb{Z}_{n}^{x}, \cdot[1]_{n}\right)$ is a group !
Question: What is the size of this grep? ie, what is $\left|\mathbb{Z}_{h}{ }^{x}\right|$?

| Examples | \mathbb{Z}_{n} | \mathbb{Z}_{n}^{x} | $\mathbb{Z}_{n}^{x} \mid$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $\{0,1\}$ | $31\}$ | 1 |
| 3 | $\{0,1,2\}$ | $21,2\}$ | 2 |
| 4 | $10,1,2,3\}$ | $\{1,3\}$ | 2 |
| 5 | $\{0,1,2,3,4\}$ | $11,2,3,4\}$ | 4 |
| 6 | $70,123,4,5\}$ | $21,5\}$ | 2 |
| 7 | $10113456\}$ | $\{123456\}$ | 6 |
| 8 | 01234567 | $1\{3,57\}$ | 4 |

Define The Euler (totient) function (or Euler's φ-function) is deponed as: $\quad \varphi: N \longrightarrow A$

$$
\varphi(n)=\left|\mathbb{Z}_{n}^{x}\right|
$$

Thu (Euler) If $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} \quad\left(\alpha_{k} \geqslant 1\right)$ is the prime fretorization of n, then:

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

eg: $\quad \varphi(2)=2\left(1-\frac{1}{2}\right)=2 \cdot \frac{1}{2}=1$

$$
\varphi(4)=4\left(1-\frac{1}{2}\right)=4 / 2=2
$$

$$
\varphi(6)=6\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=6 \cdot \frac{1}{2} \cdot \frac{2}{3}=2
$$

p prime $\Rightarrow \varphi(p)=\left\{\left\{_{x \leq a \leq p-1} \mid \operatorname{gad}(a, p)=1\right\}=p-1\right.$

$$
\text { or } \quad q(p)=p \cdot\left(1-\frac{1}{p}\right)=p \cdot \frac{p-1}{p}=p-1
$$

